DOHGYU HWANG

Midland, MI, USA | dohgyuhwang@gmail.com

dohgyuhwang.com | www.linkedin.com/in/dohgyuhwang | Google Scholar

SUMMARY

- +8 years of experience in polymer science and engineering, adhesion science. •
- Project and stakeholder management across various functions and geographies.
- Innovation, development, and commercialization of new products for diverse market segments.

KNOWLEDGE, SKILLS, AND ABILITIES

- Polymer science, adhesion science, silicone science and technology.
- Formulation strategy development for advanced material solutions and product performance optimization.
- IP analysis of emerging and existing technologies and markets for value growth.
- Mechanical characterization of adhesives, coatings, and elastomers for structure property understanding.

PROFESSIONAL EXPERIENCE

Senior Research Specialist

Dow Chemical, Midland, Michigan

- Develop silicone pressure sensitive adhesives (PSAs) and release coatings.
- Provide chemists and formulators with expertise in polymer physics frameworks to design chemicals, troubleshoot product defects, and ensure effective product development and customer support.

Graduate Researcher (Advisor: Dr. Michael Bartlett)

Virginia Tech, Blacksburg, Virginia	2020 - 2022
Iowa State University, Ames, Iowa	2016 - 2020

- Pioneered a new technique to create strong yet easy-to-peel metamaterial adhesives for packaging, wearable • sensors, and consumer adhesive applications. This technique is applicable to diverse standard materials, scale-up processes, precision patterning, and high throughput materials development.
- Led a product development team to transform our current adhesion technology from the laboratory to the • marketplace through NSF Innovation Corps (NSF I-Corps) program.
- Developed **metamaterial-based polymeric composites** for aerial/underwater drone applications. •
- Collaborated with adhesive development teams to create conductive viscoelastic adhesives for electronic applications and **pneumatically controlled dry membrane adhesives** for robotic packaging applications.

EDUCATION

Ph.D. in Macromolecular Science and Engineering Virginia Tech	2022
M.S. in Materials Science and Engineering Iowa State University	2020
B.S. in Organic Materials Science and Engineering Pusan National University	2016

HONORS AND AWARDS

Distinguished Paper Award – Adhesion Society	2022
 Peebles Award for Graduate Student Research – Adhesion Society 	2021
• 1 st Place Poster Presentation Award – National Graduate Research Polymer Conference	2021
Brown Graduate Fellowship – Iowa State University	2020 - 2021
Research Excellence Award – Iowa State University	2020
• Dr. Karl A. Gschneidner "Go for the Gold" Student Research Prize - Iowa State University	2020
Best Poster Presentation Award – Nano@IAState	2019
• Student Best Poster Award – Pressure Sensitive Tape Council (PSTC)	2018

2022 – present

SELECTED PUBLICATIONS AND PATENTS

Peer-Reviewed

18 Peer-reviewed publications to date (* equal contribution)

- **D. Hwang**, C. Lee, X. Yang, J. M. P-Gonzalez, J. Finnegan, B. Lee, E. J. Markvicka, R. Long, M. D. Bartlett, Metamaterial adhesives for programmable adhesion through reversible crack propagation. *Nature Materials*, **2023**, 22, 1030-1038.
- A. B. M. Tahidul Haque*, D. Ho*, **D. Hwang***, C. Lee, M. D. Bartlett, Electrically Conductive Liquid Metal Composite Adhesive for Reversible Bonding of Soft Electronics. *Advanced Functional Materials*, **2023**, 2304101.
- **D. Hwang***, E. J. Barron III*, A. B. M. Tahidul Haque, M. D. Bartlett. Shape Morphing Mechanical Metamaterials through Reversible Plasticity. *Science Robotics*, **2022**, 7(63), eabg2171.
- T. A. Pozarycki*, **D. Hwang***, E. J. Barron III*, B. T. Wilcox, R. Tutika, M. D. Bartlett. Tough Bonding of Liquid Metal-Elastomer Composites for Multifunctional Adhesives. *Small*, **2022**, 2203700.
- R. H. Plaut, **D. Hwang**, C. Lee, M. D. Bartlett, D. A. Dillard, Peeling of finite-length elastica on Winkler foundation until complete detachment. *International Journal of Solids and Structures*, **2022**, 111944.
- C. Haverkamp*, **D. Hwang***, C. Lee, M. D. Bartlett. Deterministic control of adhesive crack propagation through jamming based switchable adhesives. *Soft Matter*, **2021**, 17, 1731-1737.
- **D. Hwang**, K. Trent, M. D. Bartlett, Kirigami-Inspired Structures for Smart Adhesion. *ACS Applied Materials* & *Interfaces*, **2018**, 10(7), 6747-6754.
- **D. Hwang**, M. D. Bartlett. Tunable Mechanical Metamaterials through Hybrid Kirigami Structures. *Scientific Reports*, **2018**, 8(1), 3378.

Patents

- US Patent 11,904,585, Programmable adhesion using nonlinear kirigami structures.
- US Patent 20240157671, Programmable adhesion using nonlinear kirigami structures.

SELECTED PRESENTATIONS

Presented at over 10 conferences and seminars

- **D. Hwang**, Dow's R&D Capabilities and Sustainability Efforts. Pusan National University, Pusan, South Korea. 2022.
- **D. Hwang,** M. D. Bartlett. Kirigami Structures for Programmable Adhesion. Adhesion Society, San Diego, CA, USA. 2022.
- **D. Hwang**, M. D. Bartlett. Kirigami-Inspired Materials for Adhesion Control. Science of Adhesion Gordon Research Seminar (GRS), Mount Holyoke College, South Hadley, Massachusetts, USA. 2019.
- **D. Hwang**, M. D. Bartlett. Tunable Kirigami Metamaterials for Films and Adhesives. 3M Non-Tenured Faculty Award (NTFA) event, Maplewood, MN, USA. 2019 (Poster Presentation).
- **D. Hwang**, M. D. Bartlett. Tunable Kirigami Metamaterials for Films and Adhesives. Pressure Sensitive Tape Council (PSTC), Minneapolis, MN, USA. 2018 (Poster Presentation).

LEADERSHIP EXPERIENCE

Co-chair, Gordon Research Seminar (GRS) on Science of Adhesion	2019 - 2023
Organization member, Session chair, National Graduate Research Polymer Conference	2021
Co-session chair, PSAs and Viscoelasticity, Adhesion Society	2021
Entrepreneurial Lead, NSF Innovation Corps (NSF I-Corps), Iowa State University	2020
 Senator, Materials Science and Engineering, Iowa State University 	2020
Founding member, Director, Student Advocacy Committee, International Student Council	2019
Founder, Instructor, Korean Language Class, Iowa State University	2018 - 2020
Team helper, FIRST LEGO League	2019
Judge, Iowa State Science and Technology Fair	2017