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A B S T R A C T   

Quasi-static peeling of a finite-length, flexible, horizontal beam (strip, thin film) from a horizontal substrate is 
considered. The displaced end of the beam is subjected to an upward deflection or to a rotation. The action of the 
adhesive is modeled as a Winkler foundation, and debonding is based on the common fracture mechanics 
approach. The behavior is examined from the application of loading to the initiation of peeling and then to 
complete detachment of the beam from the substrate. During at least a portion of the debonding process, the 
model corresponds to what traditionally has been considered a short beam on an elastic foundation. In the 
analysis, the beam is modeled as an elastica, so that bending is paramount and large displacements are allowed. 
The effects of the relative foundation stiffness to the beam bending stiffness, the work of adhesion, and the 
length, self-weight, extensibility, and initial unbonded length of the beam are investigated. In addition, exper
iments are conducted to complement the analysis.   

1. Introduction 

Some recent papers on peeling have been motivated by the gecko and 
other wall-climbing animals (e.g., Pesika et al., 2007; Sekiguchi et al., 
2012; 2014; Williams, 2015; Tysoe and Spencer, 2015; Wu et al., 2015; 
Gu et al., 2016; Skopic and Schniepp, 2020; Gouravaraju et al., 2021; 
Wang et al., 2021). The problem of detachment is sometimes modeled as 
peeling of a beam until it completely separates from the substrate, which 
is the topic of the present study. 

A paper by Peng et al. (2019) discusses peeling and complete 
detachment of finite-length beams lifted by a vertical force F at one end. 
The substrate is not modeled as an elastic foundation. Rather, a traction- 
separation law is used for beam deflections from the rigid substrate, 
using (i) an exponential form in an elastica analysis or (ii) a bilinear 
cohesive zone in a finite element analysis. Equilibrium paths are 
presented (corresponding to F versus δ in the notation in Fig. 1(b)). The 
effects of the initial unbonded length (a0 in Fig. 1(a)), a beam stiffness 
parameter, and a beam thinness parameter are investigated. 

Other similar studies to the present one include papers that model a 

carbon nanotube as an elastica and examine complete detachment from 
a rigid substrate. Two papers involve a vertical force applied to a free 
end of the elastica. One is Buchoux et al. (2011), in which a JKR-type of 
debonding criterion is utilized, which specifies the curvature at the peel 
front in terms of the work of adhesion and the bending stiffness of the 
elastica. The elastica is almost straight and vertical when complete 
detachment is imminent. The other paper is Fu and Zhang (2011), where 
the interactive force between the elastica and the substrate is modeled as 
a van der Waals force. A sequence of four shapes during peeling is 
presented, with the first and last similar to those found in the present 
study, but the second and third are quite different due to the different 
interactive force. For deflection control, a sudden transition in shape is 
exhibited for some cases, as in the present study. 

A paper by Sasaki et al. (2010) analyzes lifting of the free edge of a 
graphene sheet by a vertical force, with a van der Waals interactive force 
between the sheet and the substrate. Shapes during peeling are similar to 
those found here for an elastica, and, under deflection control, the force 
increases just before complete detachment, as here. 

Some papers consider an elastica (modeling a carbon nanotube) in 
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which the rotation at the loaded end is fixed as the end moves upward 
(related to attachment to an atomic force microscope), with a van der 
Waals (or similar) interactive force. They include Sasaki et al. (2008; 
2010), Strus et al. (2008; 2009), and Fu and Zhang (2011). Sasaki et al. 
(2008) and Strus et al. (2009) found sudden drops in the magnitude of 
the end force during peeling, as in the present study. Ishikawa et al. 
(2009) and Baji et al. (2015) also observed sudden changes in the force, 
including just before complete detachment, as here. Finally, Mead et al. 
(2018) tested peeling of a nanowire, with the loaded end remaining 
horizontal. 

The analysis is formulated in Section 2. Numerical results are 
presented in Section 3 for deflection control and in Section 4 for rotation 
control. Experiments are described in Section 5, followed by concluding 
remarks in Section 6. 

2. Formulation 

Consider a thin, flexible, inextensible, unshearable, uniform, linearly 
elastic beam with length L, bending stiffness (flexural rigidity) EI, cross- 
sectional area A, weight per unit length W, and rectangular cross section 
having width b. As seen in Fig. 1, where W = 0, the arc length is s, with s 
= 0 at the left end and s = L at the right (controlled) end. The initial 
unstrained beam is shown in Fig. 1(a) and the deformed beam is 
sketched in Fig. 1(b). The horizontal distance between the ends of the 
beam in Fig. 1(b) is not specified in the analysis, and ranges from L 
initially (Fig. 1(a)) to zero when the beam is vertical just before com
plete detachment. 

The length of the unbonded portion of the beam is a, which is equal 
to a0 before loading is applied. Therefore the peel front is at s = L – a. The 
horizontal and vertical coordinates are xj(s) and yj(s), respectively, 
and the rotation from the horizontal (in radians) is θj(s), where j = 1 for 

0 ≤ s ≤ L – a and j = 2 for L – a ≤ s ≤ L. The bending moment is Mj(s). On 
the positive face of the beam cross section at s, Mj(s) is positive if 
counter-clockwise and the vertical internal force component Qj(s) is 
positive if downward. The horizontal force component is zero. 

The vertical deflection at the peel front s = L – a is denoted yc, the 
vertical deflection at the right end s = L is δ, and the rotation at the right 
end is ϕ. Positive senses for quantities are shown in Fig. 1(b). 

Displacement control is considered. At the right end (s = L), there is 
either (i) deflection control, in which the vertical end deflection δ is 
increased monotonically and quasi-statically (with an associated 
vertical force F), or (ii) rotation control, in which the end rotation ϕ is 
increased monotonically and quasi-statically (with an associated end 
moment M0), as shown in Fig. 1(b). 

The beam is modeled as an inextensible elastica, so that the bending 
moment is proportional to the curvature at each location. This allows 
large deflections and rotations. In some previous studies (e.g., Spies, 
1953; Yin et al., 2020; Heide-Jørgensen et al., 2021), the unbonded 
segment is treated as an elastica and a linear analysis (e.g., Euler- 
Bernoulli theory) is applied to the rest of the beam. This would not be 
appropriate here, where the beam rotations can become large in the 
bonded segment. 

The beam is attached to a Winkler foundation, consisting of a 
continuous distribution of vertical, independent, linearly elastic springs. 
The foundation stiffness is k, with the vertical restoring force per unit arc 
length at s being ky(s) (Vaz et al., 2007). (In Nicolau and Huddleston 
(1982) and Panayotounakos (1989), the foundation stiffness is assumed 
to furnish the restoring force ky(s) per unit horizontal projection 
instead.) Where the beam is bonded to the foundation, the work of 
adhesion is γ (with units of force per length). 

The governing equations are (Plaut and Virgin, 2010; 2014; Yin 
et al., 2020) 

Fig. 1. Schematics of the elastica: (a) unloaded; (b) loaded.  
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dxj

ds
= cosθj,

dyj

ds
= sinθj,

EI
dθj

ds
= Mj,

dMj

ds
= Qjcosθj (j = 1, 2),

dQ1

ds
= − W − ky1,

Q2 = (L − s)W − F.
(1) 

The boundary conditions at s = 0 and s = L, and the transition 
(matching) conditions at s = L–a, are given by 

s = 0 : M1 = 0,Q1 = 0;

s = L − a : x1 = x2, y1 = y2, θ1 = θ2,M1 = M2,Q1 = Q2;

s = L : y2 = δ,M2 = M0,Q2 = − F. (2) 

The bonded arc length is written as c = L – a, and the total energy is 
given by 

Π =
EI
2

∫ c

0

(
θ′

1

)2ds+
EI
2

∫ L

c

(
θ′

2

)2ds − γbc − Fδ − M0θ2(L)+
1
2

k
∫ c

0
y2

1ds+W

×

∫ c

0
y1ds+W

∫ L

c
y2ds.

(3) 

Stationarity of the total energy with respect to c leads to the trans
versality (debonding) condition 

y2
c =

2γb
k
. (4) 

Since displacement control is considered, the terms –F δ –M0θ2(L) in 
the total energy have not been included in the derivation of Eq. (4) 
(Maugis, 2000; Nadler and Tang, 2008; Wang and Li, 2010). Eqs. (1), 
(2), and (4) are utilized in the solution procedure. 

It follows from Eq. (4) that peeling (debonding) occurs when the 
foundation reaches the critical elongation yc. The condition of a critical 
foundation elongation was previously adopted in Nicholson (1977), 

Plaut et al. (2001), Bernard et al. (2008), and Maddalena et al. (2009). 
At the instant that the inextensible elastica detaches completely from 

the foundation under quasi-static conditions, the beam will be straight 
and vertical, with δ = L + yc. If dynamic effects were considered, com
plete detachment may occur earlier during the peeling process. 

A shooting method is used to obtain numerical solutions of a 
nondimensional version of the boundary value problem. The 
subroutines NDSolve and FindRoot in Mathematica are utilized. An 
origin is placed on the beam at the peel front (s = L–a). One set of 
horizontal and vertical axes is defined for the unbonded beam to the 
right, and another for the bonded beam to the left, as in Plaut et al. 
(2001). Unknown quantities at this origin are varied until the boundary 
conditions at the left and right ends of the beam are satisfied with suf
ficient accuracy. 

The characteristic length is defined as 1/λ, where λis defined by 
(Hétenyi, 1946; Dillard et al., 2018) 

λ =

(
k

4EI

)1/4

. (5) 

Results will be presented in terms of nondimensional quantities such 
as γλ2b/k, a/L, λL, λδ, λx, and λy, where y denotes y1 for 0 ≤ s ≤ L–a and 
y2 for L–a ≤ s ≤ L. 

In analyses of beams attached to elastic foundations, often it is 
assumed that the beam is infinitely long in one direction (semi-infinite 
beam) or two directions from applied loads. In Fig. 1, if the beam is very 
long, the boundary conditions at s = 0 may have negligible effect on the 
deformation. Hetényi (1946) states that a beam can usually be treated as 
semi-infinite (and called a “long beam”) if λL > π. If λL < π /4 = 0.785, a 
“short beam,” he says that bending deformation can be neglected 
(i.e., the beam can be assumed to be straight). For “medium beams,” 
with π/4 < λL < π, he says that no such approximations should be 
made. It is claimed that errors will be a few percent if these long-beam 
and short-beam approximations are adopted. For greater accuracy, 
he suggests that the range for medium beams be increased to 0.60 < λL 
< 5.00. Seely and Smith (1952) state that a beam can be treated as semi- 
infinite (i.e., a long beam) if λL > 1.5π = 4.712. 

3. Deflection control 

In this section, the beam is lifted at the right end, with associated 
vertical force F and with M0 = 0 (Fig. 1(b)). In the numerical results in 

Fig. 2. Nondimensional tip deflection versus nondimensional unbonded length: M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  

R.H. Plaut et al.                                                                                                                                                                                                                                 



International Journal of Solids and Structures 256 (2022) 111944

4

Figs. 2-13, the nondimensional work of adhesion is γλ2b/k = 0.005 in 
Figs. 2-7 and 9-13 (corresponding to λyc = 0.1), the initial unbonded 
length a0 is assumed to be zero in Figs. 2-8 and 11-13, and the self- 
weight W is neglected in Figs. 2-10 and 13. In other words, the effect 
of γ is examined in Fig. 8, the effect of a0 in Figs. 9 and 10, and the effect 
of W in Figs. 11 and 12. Also, the effect of extensibility is investigated in 
Fig. 13. 

First, the nondimensional tip deflection λδ is plotted versus the 
nondimensional unbonded (debonded) length a/L in Fig. 2. Curves for 
λL = 2, 3, …, 10 are presented. Peeling is initiated (with a/L = 0) when 
λδ = λyc. The rightmost linear portion of each curve is associated with the 
beam being vertical. This portion begins at the kink located at a/L = 1–[2 
λyc/(λL)] where λδ = λL–λyc, and has the formula λδ = λyc + (a/L)λL. (For 
example, the kink for λL = 2 occurs at a/L = 0.9 and λδ = 1.9.) Complete 

detachment under quasi-static conditions occurs when 
a/L = 1 and λδ = λyc + λL. 

In Fig. 2, the curves for λL = 2, 3, 4, and 5 increase monotonically. 
For λL = 6, 7, 8, 9, and 10, however, they exhibit an internal (local) 
maximum followed by an internal minimum. With deflection control, in 
which the tip deflection δ is increased monotonically, when a maximum 
point is reached, the beam shifts from one configuration to another. For 
λL = 7, this change in shape is depicted in Fig. 3. The solid beam shape is 
associated with the maximum point in Fig. 2, with a/L = 0.748, 
F/(EIλ2) = 0.027, and λδ = 2.109. The dashed beam shape in Fig. 3 
corresponds to a/L = 0.883, F/(EIλ2) = 0.007, and again λδ = 2.109. The 
peel front is at nondimensional deflection λy = 0.1. 

If dynamic effects were considered, inertia may cause the beam to 
continue to debond and to completely detach from the foundation, and 

Fig. 3. Beam shapes just before transition (solid) and just after transition (dashed): λL = 7, M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  

Fig. 4. Nondimensional tip deflection versus nondimensional unbonded length: M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005; elastica (solid), Euler-Bernoulli beam 
theory (dashed). 
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then the value of δ at the internal maximum for λL = 6, 7, 8, 9, and 10 in 
Fig. 2 would be a “critical” value. 

In Fig. 4, with the vertical axis ending at λδ = 4, curves for λL from 2 
to 9 in Fig. 2 are plotted as solid curves. For comparison, results from 
linear (Euler-Bernoulli) beam theory are plotted as dashed curves. As 
expected, the two sets of curves are close when displacements are small, 
and deviate significantly when displacements are not small. On the right 
part of the graph, the dashed curves do not exhibit a kink but continue 
upward. 

For the linear theory, the deflections are y1(x) for 0 ≤ x ≤ L–a and 
y2(x) for L–a ≤ x ≤ L. Assume W = 0. The governing equilibrium 
equations are (Hetényi, 1946; Kinloch et al., 1994; Dillard et al., 2018) 

EIy′′′′1 + ky1 = 0,EIy′′′′2 = 0 (6)  

where primes denote derivatives with respect to x. The general solution 
for y1(x) is listed in Dillard et al. (2018), and the general solution for 
y2(x) is a cubic polynomial. The boundary conditions at x = 0 and x = L, 
and the transition conditions at x = L–a, are given by 

x = 0 : y′′1 = 0, y′′′1 = 0;

x = L − a : y1 = y2, y′1 = y′2, y′′1 = y′′2 , y
′′′
1 = y′′′2 ;

x = L : y2 = δ,EIy′′2 = M0,EIy′′′2 = − F. (7)   

During debonding, Eq. (4) is satisfied at x = L–a. The dashed curves 
in Fig. 4 are obtained by applying Eqs. (4) and (7) to the general 
solutions. 

Equilibrium paths (force versus deflection) are presented in Fig. 5 
in nondimensional terms for λL = 2, 3, 4, 5, 6, 7, and 10. As the loaded 
tip of the beam is initially pulled upward, no peeling occurs until λδ =
λyc = 0.1, and the initial curves from the origin in Fig. 5 are almost 
linear. The maximum value of F occurs in Fig. 5 (and in most cases in this 
paper) at the initiation of peeling. 

For λδ > 0.1 and for λL > 3, the initial portions of the curves after 
debonding begins are very similar. For example, the curves for λL = 6 
and 10 are almost the same from λδ = 0.1 to λδ = 1.2. 

For λL ≥ 6, the equilibrium paths exhibit two vertical tangents. If λL 
= 7 in Fig. 5, the upper one occurs at λδ = 2.109 and, under deflection 
control, F/(EIλ2) then shifts from 0.0272 to 0.0067, 
corresponding to the change of beam shape in Fig. 3. 

For all values of λL, the equilibrium curves exhibit a bump just prior 
to complete detachment at λδ = λL + λyc, associated with a vertical 
equilibrium shape. This is seen for λL = 2 in Fig. 5. The formula for the 
bump, having the range λL–λyc ≤ λδ ≤ λL + λyc, is 

F
EIλ2 = 2

[
(λyc)

2
− (λL − λδ)2 ]

. (8) 

For λL = 3, a sequence of beam shapes is shown in Fig. 6 for 
a/L = 0.1, 0.3, 0.5, 0.7, 0.8, 0.9, and 0.95 (vertical beam). The corre
sponding values of F/(EIλ2), respectively, are 0.152, 0.096, 0.054, 
0.020, 0.009, 0.002, and 0.015, with λδ = 0.138, 0.251, 0.393, 0.619, 
0.914, 1.877, and 2.95. 

In Fig. 7, the associated nondimensional vertical force is plotted 
versus the nondimensional unbonded length for λL = 2, 4, 6, 8, and 10. 
The curves for λL = 4, 6, 8, and 10 are wavy. For a given value of a/L, the 
force is not monotonic as λL increases from 2 to 10. As a/L 
approaches unity (complete detachment), each curve exhibits a bump 
having the range 1–[2 λyc/(λL)] ≤ a/L ≤ 1 and given by 

F
EIλ2 = 2(λL − λa)(λa+ 2λyc − λL). (9)  

In Eq. (9), λa can be written as (a/L)λL. 
The effect of the work of adhesion on the vertical force at the initi

ation of debonding, denoted Fmax, is considered in Fig. 8, where the 
curves are associated with γλ2b/k = 0.00125, 0.005, 0.01125, and 0.020 
(corresponding to λyc = 0.05, 0.10, 0.15, and 0.20, respectively). The 
horizontal axis begins at λL = 0.3. The curves are almost linear for 
small λL with Fmax/(EIλ2) approximately equal to (λyc)(λL), and are 

Fig. 5. Nondimensional vertical force versus nondimensional tip deflection: M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  
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almost horizontal for λL > 3 with Fmax/(EIλ2) approximately equal 
to 2 λyc. 

If Euler-Bernoulli theory is used, Eqs. (5)-(7) with a = M0 = a0 = W =
0 lead to the formula 

Fmax = EIλ2

̅̅̅̅̅̅̅̅̅̅̅̅

8γλ2b
k

√

(2 − cos2λL − cosh2λL)
(sin2λL − sinh2λL)

(10)   

It is noted that when γλ2b/k is fixed in a figure, and λ is a factor 
associated with the curves and/or one or both axes, then the dimen
sional value γ changes if one considers λ to change. 

The effect of an initial unbonded length a0 (see Fig. 1(a)) is presented 
in Figs. 9 and 10, and was previously considered in Peng et al. (2019), 
Yin et al. (2020), Heide-Jørgensen et al. (2021), and Wan et al. (2021) 
for peeling, and in Bidokhti et al. (2017) for a double cantilever beam 

test, among others. In Fig. 9, the nondimensional vertical force is plotted 
versus the nondimensional tip deflection for λL = 3, γλ2b/k = 0.005, and 
a0/L = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The dashed curves correspond to the 
behavior before peeling is initiated. The result for a0 = 0 was included in 
Fig. 5 with a different range on the horizontal axis. For 
a0/L = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively, peeling begins when λδ 
= 0.100, 0.138, 0.189, 0.251, 0.319, and 0.393, and Fmax/(EIλ2) =
0.199, 0.152, 0.121, 0.096, 0.075, and 0.054. 

As a0 increases, the slope of the dashed curve decreases and the 
maximum force Fmax decreases, as for similar problems treated in Peng 
et al. (2019) and Yin et al. (2020). The effect of λL on Fmax is depicted in 
Fig. 10 for the same values of a0/L, with the horizontal axis beginning at 
λL = 0.5. The curve for a0/L = 0 was included in Fig. 8 with different 
scales on the axes. For the curves in Fig. 10 with a0/L > 0, as λL in
creases, Fmax initially increases and then decreases, which is quite 
different from the monotonic behavior when a0 = 0. It is also noted that 

Fig. 7. Nondimensional vertical force versus nondimensional unbonded length: M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005; λL = 2 (solid), 4 (dashed), 6 (dotted),  
8 (solid), 10 (dashed). 

Fig. 6. Sequence of beam shapes: λL = 3, M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  
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Fig. 9. Nondimensional vertical force versus nondimensional tip deflection: λL = 3, M0 = 0, W = 0, γλ2b/k = 0.005.  

Fig. 10. Nondimensional maximum vertical force versus nondimensional beam length: M0 = 0, W = 0, γλ2b/k = 0.005.  

Fig. 8. Nondimensional maximum vertical force versus nondimensional beam length: M0 = 0, a0 = 0, W = 0; γλ2b/k = 0.00125, 0.005, 0.01125, 0.020 (λyc = 0.05, 
0.10, 0.15, 0.20). 
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on those curves, if L increases as λL increases, then a0 increases 
correspondingly. 

The effect of the beam’s self-weight W is examined next. (Iandiorio 
and Salvini (2020; 2022), including self-weight, examined lifting of an 
elastica from a rigid foundation by an end force and moment, with no 
adhesion.) Results are presented in Figs. 11 and 12, with λL = 3, a0 = 0, 
and γλ2b/k = 0.005. 

In Fig. 11, the nondimensional tip deflection λδ is plotted versus the 
nondimensional unbonded length a/L for W/(EIλ3) = 0, 0.05, and 0.1. 
The curve for W = 0 was included in Figs. 2 and 4. The value of a/L at the 
kink, where the beam becomes vertical, is 

a
L
= 1 −

λyc

λL
−

[(
λyc

λL

)2

+
1

2λL
W

EIλ3

]1/2

. (11)  

The corresponding value of λδ is given by λyc + (a/L)λL. 
Before the kink, at a given value of a/L, the tip deflection increases as 

W increases. The maximum downward deflection d of the bottom end of 
the vertical beam into the elastic foundation (see Fig. 1(b)) is given by 

λd = 0.10, 0.29, and 0.40 for W/(EIλ3) = 0, 0.05, and 0.1, respectively, 
In Fig. 12, the nondimensional vertical force is plotted versus the 

nondimensional unbonded length a/L, again for W/(EIλ3) = 0, 0.05, and 
0.1. The value of a/L at the kink is given by Eq. (11). Past the kink, the 
value of the force is given by 

F
EIλ2 =

λLW
EIλ3 + 2(λL − λa)(λa+ 2λyc − λL). (12) 

Eq. (12) can be obtained by equilibrium of the vertical beam when 
length yc above the foundation level is pulled downward by the foun
dation and length (L–a–yc) below the foundation is pushed upward by 
the foundation. The associated peak value of the force, Fpeak, occurs at 
a/L = (λL–λyc)/(λL), which is independent of W, and is given by 

Fpeak

EIλ2 =
λLW
EIλ3 + 2(λyc)

2
. (13) 

At complete detachment (a/L = 1.0), the force F equals the total 
weight of the beam. For example, in Fig. 12, if the normalized self- 
weight is 0.1 (with the normalized beam length being 3), then the 

Fig. 11. Nondimensional tip deflection versus nondimensional unbonded length: λL = 3, M0 = 0, a0 = 0, γλ2b/k = 0.005.  

Fig. 12. Nondimensionl vertical force versus nondimensional unbonded length: λL = 3, M0 = 0, a0 = 0, γλ2b/k = 0.005.  
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curve has the value 0.1 × 3 at the right end. 
For the top curve in Fig. 12, the maximum value of the force during 

peeling does not occur when peeling is initiated, but just before com
plete detachment, and can be computed from Eq. (13). 

The effect of extensibility of the elastica is considered now. The axial 
strains are denoted ε1 for 0 < s < L–a, and ε2 for L–a < s < L. They are 
given by 

ε1 = −
Q1sinθ1

EA
, ε2 =

Fsinθ2

EA
. (14) 

In Eq. (1), a new factor (1 + ε1) is included on the right sides of the 
equations for dx1/ds, dy1/ds, and dM1/ds, and a new factor (1 + ε2) is 
included on the right sides of the equations for dx2/ds, dy2/ds, and 
dM2/ds (Plaut, 2010; Chen and Tsao, 2013). 

The radius of gyration r, and the equation of λr for a beam with 
rectangular cross section of width b and depth h, are respectively 

r =

̅̅̅
I
A

√

, λr =
1
2

(
kh

3Eb

)1/4

. (15)   

In Fig. 13, with λL = 3, the nondimensional tip deflection is plotted 
versus the nondimensional unbonded length for the extensible case 
λr = 2 (solid curve) and for the inextensible elastica (ε1 = ε2 = λr = 0). 
For λr = 2 in Fig. 13, the maximum axial strain is 0.08 and occurs at the 
loaded end of the beam when peeling begins (a/L = 0), and the mini
mum axial strain is –0.08 and occurs at the center of the small bonded 
part when a/L = 0.93. Higher values of λr lead to higher strain 
magnitudes. 

For both curves in Fig. 13, the beam becomes vertical when 
a/L = 0.933, given by Eq. (11). For the extensible case (solid curve), a 
maximum occurs at a/L = 0.975 and λδ = 3.239. Under deflection 
control, when this maximum point is reached, apparently the beam will 
jump off the substrate dynamically. 

4. Rotation control 

In this section, a counter-clockwise rotation ϕ is applied to the right 

Fig. 13. Nondimensional tip deflection versus nondimensional unbonded length: λL = 3, M0 = 0, a0 = 0, W = 0, γλ2b/k = 0.005; inextensible (dotted), extensible 
with λr = 2 (solid). 

Fig. 14. End rotation versus nondimensional unbonded length: F = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  
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end of the inextensible elastica, with F = 0 (Fig. 1(b)). The associated 
end moment is M0. In the numerical examples, γλ2b/k = 0.005 (λyc =

0.1), a0 = 0, and W = 0. Peeling caused by an applied end moment was 
previously studied by Cotterell et al. (2006) and Iandiorio and Salvini 
(2020; 2022). The unbonded segment of the beam has constant curva
ture (i.e., is circular). 

The end rotation ϕ is plotted versus the nondimensional unbonded 
length a/L in Fig. 14 for λL = 3, 5, 7, and 9. The curves exhibit an in
ternal maximum and internal minimum, and ϕ becomes large as a/L 
approaches unity. In the plots involving ϕ in this section, 0 ≤ ϕ ≤ π/2. 
For λL = 3, 5, 7, and 9, respectively, the maxima occur at a/L = 0.436, 
0.581, 0.676, and 0.737, and have the values ϕ = 0.380, 0.721, 1.094, 
and 1.478 rad. When the maximum point is reached, the beam may 
transition to the equilibrium configuration with a/L = 0.783, 0.938, 
0.968, and 0.978 for λL = 3, 5, 7, and 9, respectively, or the beam may 
detach from the foundation dynamically. 

A sequence of shapes for λL = 3 is shown in Fig. 15. Dots denote the 
locations of the peel front. For a/L = 0.15, 0.30, 0.436 (the location of 

the internal maximum in Fig. 14), and 0.783, respectively, the end 
deflection is λδ = 0.208, 0.343, 0.464, and 0.903. When the internal 
maximum in Fig. 14 is reached, the beam may shift to the almost-linear 
equilibrium shape for a/L = 0.903 shown in the figure and having the 
same end rotation as for a/L = 0.436. 

A sequence of shapes for λL = 5 is shown in Fig. 16. For a/L = 0.2, 
0.4, 0.581 (at the internal maximum in Fig. 14), and 0.938, respectively, 
λδ = 0.395, 0.876, 1.365, and 3.153. The curves are similar in form to 
those in Fig. 14. 

Fig. 17 illustrates the variation of the associated nondimensional end 
moment M0/(λEI) versus the nondimensional unbonded length, with 
λL = 3, 4, 5, 7, and 9. As peeling begins, the end moment remains almost 
constant for a range of a/L that increases as λL increases, and then the 
end moment decreases to zero. The forms of the curves in Fig. 17 are 
quite different from those in Fig. 7 for deflection control. 

Finally, in Fig. 18, the nondimensional end moment is plotted versus 
the end rotation for λL = 3, 4, 5, 7, and 9. The dashed line governs before 
peeling is initiated. The upper vertical tangents occur at 

Fig. 15. Sequence of beam shapes: λL = 3, F = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  

Fig. 16. Sequence of beam shapes: λL = 5, F = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  
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ϕ = 0.380, 0.543, 0.721, 1.094, and 1.478 rad, respectively, for λL = 3, 
4, 5, 7, and 9. 

5. Experiments 

The experiments were performed by bonding 0.5 mm thick, 35 mm 
wide beams of polyethylene terephthalate glycol (PETG) with different 
lengths (50, 30, 20, 15, 10, 5 mm) onto a compliant foundation. The 
experiments were run at a crosshead displacement rate of 25 mm/min. 
The foundation was an elastomeric material of thickness h = 1.5 mm 
composed of a silicone elastomer (Dow Corning Sylgard 184) mixed at a 
10:1 ratio with a dispersion of polyethylenimine (PEIE) at 0.4 vol%. The 
PEIE modifies the crosslinking reaction of the silicone elastomer and 
makes the foundation more adhesive. The value GC (i.e., γ) was 
measured to be 15 N/m through a 90◦ peel experiment at a crack ve
locity of 25 mm/min, and the foundation modulus was Ea = 100 kPa 
measured through uniaxial tension experiments. 

Deflection control was applied. The experiment was performed on a 

peel fixture by attaching one end of the beam to a vertical wire that 
connected to the load cell to measure the corresponding force. The wire 
was bonded to the PETG beam through a laser cut acrylic block that 
evenly distributed the load across the beam width. Fig. 19 is a photo of 
the experiment during lifting of a beam with length L = 50 mm. 

The experiments show that for small values of the nondimensional λL 
parameter, the maximum vertical force increases with increasing λL. 
This occurs until approximately λL = 2, after which the experimental 
maximum vertical force values plateau. This is found to show good 
agreement with the analysis, as shown in Fig. 20. (In the analysis, E = 2 
GPa, k = Eab/h, λ = 168.2 m− 1, λyc = 0.113, γλ2b/k = 0.00636, M0 = 0, 
a0 = 0, and W = 0.). 

Experimental equilibrium paths (force versus tip deflection) are 
presented in Fig. 21. They can be compared with those in Fig. 5. In 
Fig. 21, for the case L = 10 mm, there is a hump before complete 
detachment, as also seen in the theoretical results. For the case L = 50 
mm (with λL = 8.41), the descending curve is wavy, which is somewhat 
similar to the curves in Fig. 5 for λL = 5 and 6. The curves in Fig. 21 do 

Fig. 17. Nondimensional end moment versus nondimensional unbonded length: F = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  

Fig. 18. Nondimensional end moment versus end rotation: F = 0, a0 = 0, W = 0, γλ2b/k = 0.005.  
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Fig. 19. Photo of experiment.  

Fig. 20. Experimental comparison of the nondimensional maximum vertical force versus nondimensional beam length. The data points represent the experiments, 
while the error bars represent the standard deviation with n = 3. The solid line represents the analysis. 

Fig. 21. Vertical force versus tip deflection from experiment for six beam lengths.  
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not have a sharp point at the top, but sharp cusps predicted by models 
are seldom realized experimentally, where slight imperfections, time- 
dependent effects, and other factors often tend to soften or smooth the 
behavior predicted by idealized models. Although we have seen cata
strophic failures supporting the predicted instabilities with time- 
independent materials, the current PDMS adhesive exhibits some rate 
dependence, as seen in the gradual initial debonding that leads to de
parture from linear behavior, the softening of the load peak, and the 
more gradual and stable debonding observed for the 50-mm-long beam. 

6. Concluding remarks 

This paper has focused on the complete detachment of finite-length 
beams adhered to a substrate, using the beam-on-elastic-foundation 
model. Much of the previous work on peeling has considered long 
beams (sometimes infinite or semi-infinite) and/or steady-state (self- 
similar) peeling. 

The horizontal, linearly elastic beam was modeled as an inextensible 
elastica, and was subjected either to deflection control or rotation con
trol at one end. It was assumed that bending of the beam was more 
important than stretching. At the peel front, the debonding condition 
was obtained by fracture mechanics and corresponded to a critical 
vertical foundation deflection. For quasi-static behavior, the beam 
became vertical just before it detached. The effects of the relative 
foundation stiffness, the work of adhesion (and critical foundation 
deflection), and the length, self-weight, extensibility, and initial 
unbonded length of the beam were examined. 

For the case of deflection control, a sudden shift in shape occurred 
during peeling if the nondimensional beam length λL was sufficiently 
large, where L is the beam length and 1/ λ is its characteristic length 
defined in Eq. (5). Inertia could cause the beam in practice to continue 
debonding and completely detach from the foundation. If not, during 
final pulling of the vertical beam, the associated vertical force increased 
and then decreased. The maximum force usually occurred at the initi
ation of peeling; it increased with an increase in (i) λL, (ii) the work of 
adhesion (and critical foundation deflection), and (iii) the self-weight, 
and it decreased with an increase in the initial unbonded length. 

For the case of rotation control, with no self-weight, the maximum 
associated end moment occurred at the initiation of peeling and, for 
sufficiently high values of λL, remained at that value during an initial 
phase of peeling. During peeling, the end moment decreased to zero 
when the beam became vertical, with part of the beam below the 
foundation level. 

A basic Winkler foundation was considered, and therefore shear 
resistance of the foundation was not included. A linear (Euler-Bernoulli) 
beam theory was not appropriate due to the large deflections and ro
tations of the beam before complete detachment, although it was shown 
to be fairly accurate during an initial stage of peeling. 

The Winkler foundation model consists of a continuous distribution 
of independent vertical springs. The maximum nondimensional upward 
deflection of the foundation in almost all of the examples in this paper is 
0.1, whereas the nondimensional length of the beam is in the range 2–10 
in most of the numerical results. However, the upward deflection of the 
foundation cannot be compared to the thickness of the foundation, 
which is not explicitly involved in the analysis. The linear model used for 
the foundation is more reliable for cases in which the maximum upward 
deflection of the foundation is small compared to the foundation 
thickness. 

Peeling of a slender, flexible adherend from a substrate arises in 
various situations (Dillard et al., 2018; Hwang et al., 2018). Few pre
vious studies have analyzed peeling until complete detachment occurs, 
but the phenomenon is of interest (e.g., Buchoux et al., 2011; Fu and 
Zhang, 2011; Sekiguchi et al., 2012; 2014; Wu et al., 2015; Gu et al., 
2016; Peng et al., 2019; Gouravaraju et al., 2021). The behavior just 
before such detachment can be surprising, as demonstrated in examples 
here. It may require an increase in the peel force, which may be 

important to know. The results presented here are new and should be 
useful in a variety of applications, including biological adhesion. 
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